Ethanol inhibits kainate responses of glutamate receptors expressed in Xenopus oocytes: role of calcium and protein kinase C.

نویسندگان

  • J E Dildy-Mayfield
  • R A Harris
چکیده

Recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors expressed in oocytes are inhibited by ethanol and the sensitivity to ethanol depends on the kainate concentration and the subunit(s) expressed. For example, GluR3 kainate channels are more sensitive to inhibition by ethanol than GluR6 channels in the presence of maximally effective kainate concentrations. To determine if the ethanol inhibition was influenced by the cation permeability (Na+ vs Na+ and Ca2+) of the channels expressed, we compared ethanol inhibition of Ca(2+)-permeable glutamate receptors (GluRs) in oocytes perfused with normal- and high-Ca2+ buffers. The ethanol inhibition was much greater when Ca2+ was the only permeant cation. When Ba2+ was substituted for Ca2+, the ethanol inhibition was reduced, although it was still greater than with normal buffer. The enhanced ethanol inhibition of kainate-stimulated Ca2+ currents was reduced in oocytes injected with the Ca2+ chelator BAPTA, suggesting a role for intracellular Ca2+ in mediating enhanced ethanol sensitivity of kainate channels. The enhanced ethanol inhibition of Ca2+ currents was not due to a direct ethanol inhibition of Ca(2+)-stimulated Cl- currents in the oocyte because ethanol produced no effect on Ca(2+)-stimulated Cl-currents induced by injection of myo-inositol-1,4,5-trisphosphate. Because Ca2+ activates protein kinase C (PKC) and because we found that the PKC activator phorbol 12-myristate 13-acetate inhibits kainate responses (Dildy-Mayfield and Harris, 1994), we examined the role of PKC in mediating the enhanced ethanol inhibition of kainate responses produced by increased Ca2+. Inhibition of PKC by injection of the PKC inhibitor peptide or calphostin C prevented the enhanced ethanol inhibition of kainate-induced Ca2+ responses without altering ethanol inhibition in normal buffer. Thus, ethanol inhibition of kainate channels may involve two mechanisms, one that is independent of PKC and a second type that is due to activation of PKC under conditions of elevated Ca2+, resulting in enhanced inhibition of kainate responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus.

Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central n...

متن کامل

Mol081802 106..121

Kainate receptors (KARs), a family of ionotropic glutamate receptors, are widely expressed in the central nervous system and are critically involved in synaptic transmission. KAR activation is influenced by metabotropic glutamate receptor (mGlu) signaling, but the underlying mechanisms are not understood. We undertook studies to examine how mGlu modulation affects activation of KARs. Confocal i...

متن کامل

Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes.

Injection of Caenorhabditis elegans polyA RNA into Xenopus laevis oocytes led to the expression of neurotransmitter receptors that generated some unique responses, including ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as well as receptors that coupled to G proteins, such as those to octopamine, norepinephrine, and angiotensin, which activated the oocyte's own p...

متن کامل

Activation of group I metabotropic glutamate receptors potentiates heteromeric kainate receptors.

Kainate receptors (KARs), a family of ionotropic glutamate receptors, are widely expressed in the central nervous system and are critically involved in synaptic transmission. KAR activation is influenced by metabotropic glutamate receptor (mGlu) signaling, but the underlying mechanisms are not understood. We undertook studies to examine how mGlu modulation affects activation of KARs. Confocal i...

متن کامل

Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes.

Previous studies have demonstrated that ethanol and volatile anesthetics inhibit the function of some metabotropic (G protein-coupled) receptors, including the 5-hydroxytryptamine2 and muscarinic cholinergic receptors. The metabotropic glutamate receptors (mGluRs) show little sequence homology with most other metabotropic receptors and are important modulators of synaptic transmission in the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 1995